
Level - 1 DTS-3

- 31.(A) Monosilane (e.g., SiH_4) on coming in contact with air burns with a luminous flame producing vortex ring. These rings are of silica. $SiH_4 + 2O_2 \longrightarrow SiO_2 + 2H_2O$
- **32.(D)** Zeolites are alumino silicates having three dimensional open structure with four or six membered ring, they have cavities and can take up water and other small molecules.
- 33.(C) MCl_2 oxidation state of M = +2; MCl_4 oxidation state of M = +4Higher the oxidation state, smaller the size, greater the polarizing power and greater the covalent character. Hence, MCl_4 is more covalent and MCl_2 is more ionic.
- **34.(AB)** C-60 is called Buckminster fullerene. It is discovered in 1990 as a constituent of soot. Its shape is like a soccer ball. It is a covalent network solid.
- **35.(B)** Stannous chloride (SnCl₂) is a good reducing agent. It reduces HgCl_2 into Hg (grey precipitate), in two steps. $\operatorname{SnCl}_2 + 2\operatorname{HgCl}_2 \longrightarrow \operatorname{SnCl}_4 + \operatorname{Hg}_2\operatorname{Cl}_2 \downarrow$; $\operatorname{SnCl}_2 + \operatorname{Hg}_2\operatorname{Cl}_2 \longrightarrow \operatorname{SnCl}_4 + 2\operatorname{Hg}_2 \downarrow$ grey
- **36.(B)** The structure of silicates has been found with the help of X-ray diffraction technique. All silicates have tetrahedral SiO_4^{4-} ion as a basic building unit i.e., all silicates are composed of many units. Tetrahedral shape of $\left[SiO_4\right]^{4-}$ ion is due to sp^3 -hybridisation of Si-atom. Sheet silicates are formed when three oxygen (bridging O-atoms) of each $\left(SiO_4\right)^{4-}$ unit are shared. Hence general formula of sheet silicates is $\left(Si_2O_5\right)_n^{2n-}$.

- 37.(D) O O O O
- **38.(A)** The correct decreasing order of catenation property of group 14 elements is as $C \gg Si \gg Ge = Sn \gg Pb$ Catenation property is directly proportional to the bond energy.
- **39.(A)** R₃SiCl on hydrolysis can only form a dimer.
- **41.(A)** (CH₃)₂SiCl₂ undergoes hydrolysis but (CH₃)₂CCl₂ does not because in Si, low lying d-orbital is present.
- **42.(C)** The reluctance of the s-electrons of the valence shell to take part in bonding is called inert pair effect. It increases on moving down in a group. Hence, Pb shows most pronounced inert pair effect.

- **43.(B)** B_2H_6 is electron deficient due to presence of $3c-2e^-$ bond.
- **44.(D)** Cyclic silicone is obtained by hydrolysis of R_2SiCl_2 .

$$\begin{split} &R_2SiCl_2 + H_2O \xrightarrow{\quad hydrolysis \quad} R_2Si(OH)_2 + 2HCl \\ &R_2Si(OH)_2 \xrightarrow{\quad Polymerization \quad} Cyclic \ silicon \end{split}$$

45.(B) Due to smaller size and better overlapping.